系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 577-583.doi: 10.12305/j.issn.1001-506X.2022.02.27
王海滨*, 关欣, 衣晓
收稿日期:
2021-01-11
出版日期:
2022-02-18
发布日期:
2022-02-24
通讯作者:
王海滨
作者简介:
王海滨(1982—), 男, 副教授, 博士研究生, 主要研究方向为智能信息处理|关欣(1978—), 女, 教授, 博士, 主要研究方向为信息融合|衣晓(1976—), 男, 教授, 博士, 主要研究方向为信息融合
基金资助:
Haibin WANG*, Xin GUAN, Xiao YI
Received:
2021-01-11
Online:
2022-02-18
Published:
2022-02-24
Contact:
Haibin WANG
摘要:
针对态势认知中目标数量多、信息不确定、数据不精确等问题, 提出一种基于区间数聚类的目标分群算法。首先, 考虑到传感器测量数据具有误差且数据不完全等因素, 采用区间数对传感器探测到的目标进行特征描述。然后, 为有效利用区间数信息定义了一种新的距离度量, 并给出了改进的区间数聚类目标分群算法。最后, 构造4类相互独立的区间数据集, 对区间数据进行分类测试, 并通过典型想定场景设定多类目标实体, 基于目标空间位置、运动特征和属性等要素进行空间分群和任务分群。仿真结果验证了算法能够有效对目标进行分群, 具有较强的稳定性。
中图分类号:
王海滨, 关欣, 衣晓. 基于区间数聚类的目标分群算法[J]. 系统工程与电子技术, 2022, 44(2): 577-583.
Haibin WANG, Xin GUAN, Xiao YI. Method of target grouping based on interval number clustering[J]. Systems Engineering and Electronics, 2022, 44(2): 577-583.
表2
部分想定目标特性区间数据"
目标编号 | X/m | Y/m | Z/m | 速度/(km/h) | 航向/(°) | 雷达截面积/m2 | 通信频率/MHz | 空间群 | 任务群 |
T1 | [4 217, 4 706] | [4 639, 5 090] | [19, 21] | [38, 61] | [19, 24] | [397, 411] | [364, 369] | S1 | A1 |
T2 | [4 578, 5 122] | [5 236, 5 390] | [11, 16] | [61, 74] | [26, 38] | [284, 421] | [355, 412] | S1 | A1 |
T3 | [3 583, 3 661] | [5 369, 5 673] | [14, 16] | [39, 70] | [13, 45] | [415, 426] | [420, 508] | S1 | A1 |
T19 | [5 757, 7 025] | [4 794, 5 780] | [3 170, 3 500] | [597, 761] | [103, 119] | [12, 14] | [288, 328] | S2 | A1 |
T20 | [5 633, 7 168] | [4 886, 5 644] | [3 226, 3 314] | [683, 842] | [82, 121] | [13, 15] | [422, 481] | S2 | A1 |
T31 | [1 369, 2 075] | [3 743, 3 820] | [15, 18] | [40, 50] | [179, 185] | [369, 428] | [367, 457] | S3 | A2 |
T32 | [280, 314] | [4 756, 4 812] | [14, 16] | [60, 74] | [172, 199] | [326, 414] | [380, 469] | S3 | A2 |
T43 | [8 034, 9 260] | [4 680, 5 180] | [6 615, 6 761] | [880, 967] | [246, 267] | [15, 17] | [346, 406] | S4 | A2 |
T44 | [8 002, 9 274] | [3 669, 4 515] | [6 931, 7 174] | [758, 796] | [251, 271] | [15, 23] | [375, 423] | S4 | A2 |
T45 | [6 839, 7 139] | [5 061, 5 328] | [6 936, 6 995] | [559, 740] | [241, 278] | [12, 16] | [393, 463] | S4 | A2 |
1 | 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京: 电子工业出版社, 2010. |
HE Y , WANG G H , GUAN X . Information fusion theory and applications[M]. Beijing: Publishing House of Electronics Industry, 2010. | |
2 | 朱丰, 胡晓峰, 吴琳, 等. 从态势认知走向态势智能认知[J]. 系统仿真学报, 2018, 30 (3): 761- 771. |
ZHU F , HU X F , WU L , et al. From situation cognition stepped into situation intelligent cognition[J]. Journal of System Simulation, 2018, 30 (3): 761- 771. | |
3 |
李伟生, 王宝树. 态势估计中基于模糊集理论的目标编群方法[J]. 系统工程与电子技术, 2005, 27 (7): 1235- 1237.
doi: 10.3321/j.issn:1001-506X.2005.07.024 |
LI W S , WANG B S . Target classification method for situation assessment based on fuzzy sets[J]. Systems Engineering and Electronics, 2005, 27 (7): 1235- 1237.
doi: 10.3321/j.issn:1001-506X.2005.07.024 |
|
4 |
李伟楠, 章卫国, 史静平, 等. 基于M-CFSFDP算法的战场目标分群方法[J]. 西北工业大学学报, 2018, 36 (6): 1121- 1128.
doi: 10.3969/j.issn.1000-2758.2018.06.013 |
LI W N , ZHANG W G , SHI J P , et al. A battlefield target grouping method based on M-CFSFDP algorithm[J]. Journal of Northwestern Polytechnical University, 2018, 36 (6): 1121- 1128.
doi: 10.3969/j.issn.1000-2758.2018.06.013 |
|
5 |
艾伟, 张冬宁. 一种基于分群矩阵的目标动态分群算法[J]. 无线电工程, 2015, 45 (12): 64- 68.
doi: 10.3969/j.issn.1003-3106.2015.12.17 |
AI W , ZHANG D N . A dynamic target grouping approach based on grouping matrix[J]. Radio Engineering, 2015, 45 (12): 64- 68.
doi: 10.3969/j.issn.1003-3106.2015.12.17 |
|
6 |
龙真真, 张策. 兵力聚合中的目标分群方法研究[J]. 计算机工程与应用, 2011, 47 (20): 225- 230.
doi: 10.3778/j.issn.1002-8331.2011.20.063 |
LONG Z Z , ZHANG C . Research on methodology of target-grouping in force aggregation[J]. Computer Engineering and Applications, 2011, 47 (20): 225- 230.
doi: 10.3778/j.issn.1002-8331.2011.20.063 |
|
7 | 樊振华, 师本慧, 陈金勇, 等. 基于改进空间划分的目标分群算法[J]. 系统工程与电子技术, 2017, 39 (5): 991- 995. |
FAN Z H , SHI B H , CHEN J Y , et al. Improved space partition based target clustering algorithm[J]. Systems Engineering and Electronics, 2017, 39 (5): 991- 995. | |
8 | 张永利, 刘楠楠, 王兆伟. 基于神经网络的目标分群及目标运动状态预测[J]. 舰船电子对抗, 2020, 43 (3): 7- 12. |
ZHANG Y L , LIU N N , WANG Z W . Target grouping and target motion state prediction based on neural network[J]. Shipboard Electronic Countermeasure, 2020, 43 (3): 7- 12. | |
9 | WANG X X, ZHAO Z Y. Research on hierarchical aggregation method for situation assessment[C]//Proc. of the Advances in Computer Science and Ubiquitous Computing, 2018: 596-602. |
10 | FANG F T, LI X J, XING Y P, et al. Research on clustering method of airborne threat target based on density[C]//Proc. of the Journal of Physics: Conference Series, 2019. |
11 | BIN Y, JOSEPH G, SEAN O, et al. An evidential model of multisensor decision fusion for force aggregation and classification[C]//Proc. of the International Conference on Information Fusion, 2005: 977-984. |
12 |
ANIELLO G D , GAETA A , GAETA M , et al. Self-regulated learning with approximate reasoning and situation awareness[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 9 (1): 151- 164.
doi: 10.1007/s12652-016-0423-y |
13 | ANIELLO G D, GAETA M, TOMASIELLO S, et al. A fuzzy consensus approach for group decision making with variable importance of experts[C]//Proc. of the IEEE International Conference on Fuzzy Systems, 2016: 1693-1700. |
14 |
DE C F A T , DE S R M C R , CHAVENT M , et al. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data[J]. Pattern Recognition Letters, 2006, 27 (3): 167- 179.
doi: 10.1016/j.patrec.2005.08.014 |
15 | MACIEL L , BALLINI R . A fuzzy inference system modeling approach for interval-valued symbolic data forecasting[J]. Knowledge-Based Systems, 2019, 164 (15): 139- 149. |
16 | XU X , LU J H , WANG W . Hierarchical clustering of complex symbolic data and application for emitter identification[J]. Journal of Computer Science & Technology, 2018, 33 (4): 807- 822. |
17 |
KUNCHEVA L I , VETROV D P . Evaluation of stability of k-means cluster ensembles with respect to random initialization[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2006, 28 (11): 1798- 1808.
doi: 10.1109/TPAMI.2006.226 |
18 |
ORCIUOLI F , PARENTE M . An ontology-driven context-aware recommender system for indoor shopping based on cellular automata[J]. Journal of Ambient Intelligence and Humanized Computing, 2017, 8 (6): 937- 955.
doi: 10.1007/s12652-016-0411-2 |
19 | KALINTHA W, ONO S, NUMAO M, et al. Kernelized evolutionary distance metric learning for semi-supervised clustering[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2017: 4945-4946. |
20 | KAO C H , NAKNO J , SHIEH S H , et al. Exploratory data analysis of interval-valued symbolic data with matrix visualization[J]. Computational Stats & Data Analysis, 2014, 79, 14- 29. |
21 |
BLASCH E , AL-NASHIF Y , HARIRI S . Static versus dynamic data information fusion analysis using DDDAS for cyber security trust[J]. Procedia Computer Science, 2014, 29, 1299- 1313.
doi: 10.1016/j.procs.2014.05.117 |
22 |
WITTEN D M , TIBSHIRANI R . A framework for feature selection in clustering[J]. Journal of the American Statistical Association, 2010, 105 (490): 713- 725.
doi: 10.1198/jasa.2010.tm09415 |
23 | CAO H, WANG P, MA R, et al. On non-euclidean metrics based clustering[C]//Proc. of the 3rd Sino-Foreign-Interchange Conference on Intelligent Science and Intelligent Data Engineering, 2013: 655-663. |
24 |
LIU B , BLASCH E , CHEN Y , et al. Information fusion in a cloud computing era: a systems-level perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29 (10): 16- 24.
doi: 10.1109/MAES.2014.130115 |
25 | DHILLON I S , GUAN Y , KULIS B . Weighted graph cuts without eigenvectors a multilevel approach[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2007, 29 (11): 1944- 1957. |
26 |
DE C F A T , BRITO P , BOCK H H . Dynamic clustering for interval data based on L2 distance[J]. Computational Statistics, 2006, 21 (2): 231- 250.
doi: 10.1007/s00180-006-0261-z |
27 |
HALL D L , LLINAS J . An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85 (1): 6- 23.
doi: 10.1109/5.554205 |
28 |
BLASCH E , SALERNO J , KADAR I , et al. Resource management coordination with level 2/3 fusion issues and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23 (3): 32- 46.
doi: 10.1109/MAES.2008.4476103 |
29 | STEINBERG A N , LIGGINS M E , HALL D L , et al. Foundations of situation and threat assessment, chapter 18 of handbook of multisensor data fusion[M]. London: CRC Press, 2009. |
30 |
ENDSLEY M R . Toward a theory of situation awareness in dynamic systems[J]. Human Factors, 1995, 37 (1): 32- 64.
doi: 10.1518/001872095779049543 |
31 |
KOKAR M M , ENDSLEY M R . Situation awareness and cognitive modeling[J]. IEEE Intelligent Systems, 2012, 27 (3): 91- 96.
doi: 10.1109/MIS.2012.61 |
32 | 万静, 崔美玉, 何云斌, 等. 障碍空间中基于Voronoi图的不确定数据聚类算法[J]. 计算机研究与发展, 2019, 56 (5): 977- 991. |
WAN J , CUI M Y , HE Y B , et al. Uncertain data clustering algorithm based on Voronoi diagram in obstacle space[J]. Journal of Computer Research and Development, 2019, 56 (5): 977- 991. |
[1] | 王磊, 张志勇, 曾维贵, 曹司磊, 张天赫. 基于数据场联合决策图改进的GMM聚类[J]. 系统工程与电子技术, 2022, 44(9): 2743-2751. |
[2] | 杨建峰, 肖和业, 李亮, 白俊强, 董维浩. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539. |
[3] | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44(6): 1889-1896. |
[4] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
[5] | 于博文, 于琳, 吕明, 张捷. 基于M-ANFIS-PNN的目标威胁评估模型[J]. 系统工程与电子技术, 2022, 44(10): 3155-3163. |
[6] | 张一迪, 王悦斌, 王培志, 杨沁, 陆起涌, 张建秋, 李旦. 恒虚警检测信源数的方法[J]. 系统工程与电子技术, 2022, 44(1): 1-9. |
[7] | 范加利, 田少兵, 黄葵, 朱兴动. 基于Faster R-CNN的航母舰面多尺度目标检测算法[J]. 系统工程与电子技术, 2022, 44(1): 40-46. |
[8] | 赵禄达, 王斌. 基于RS-DBN的电子对抗目标清单生成方法[J]. 系统工程与电子技术, 2021, 43(9): 2373-2382. |
[9] | 杨刚, 吴旭升, 孙盼, 朱浩, 熊胜. 基于性能的复杂装备现场可更换单元规划[J]. 系统工程与电子技术, 2021, 43(8): 2174-2180. |
[10] | 吕跃, 杨爱武, 李战武, 奚之飞. 空战决策知识构建方法研究[J]. 系统工程与电子技术, 2021, 43(7): 1866-1874. |
[11] | 张佳琦, 陶海红, 张修社. 量测点迹空间聚类的多传感器多帧检测算法[J]. 系统工程与电子技术, 2021, 43(6): 1533-1540. |
[12] | 马倩, 邹焕新, 李美霖, 成飞, 贺诗甜. 基于SNIC的双时相SAR图像超像素协同分割算法[J]. 系统工程与电子技术, 2021, 43(5): 1198-1209. |
[13] | 施伟, 黄红蓝, 冯旸赫, 刘忠. 面向多类别分类问题的子抽样主动学习方法[J]. 系统工程与电子技术, 2021, 43(3): 700-708. |
[14] | 阳榴, 朱卫纲, 吕守业, 马爽. 面向非协作多功能雷达的波形单元提取方法[J]. 系统工程与电子技术, 2021, 43(10): 2843-2850. |
[15] | 程万里, 张晶, 王慧. 超密集网络中基于聚类的资源分配方案[J]. 系统工程与电子技术, 2020, 42(7): 1623-1629. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||