Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1388-1396.doi: 10.23919/JSEE.2024.000036
• • 上一篇
收稿日期:
2022-11-08
接受日期:
2024-01-04
出版日期:
2024-12-18
发布日期:
2025-01-14
Sixing LIU1(), Changbao PEI1(
), Xiaodong YE1(
), Hao WANG1(
), Fan WU2(
), Shifei TAO1,*(
)
Received:
2022-11-08
Accepted:
2024-01-04
Online:
2024-12-18
Published:
2025-01-14
Contact:
Shifei TAO
E-mail:sixingliu@njust.edu.cn;cbpei@njust.edu.cn;13851545785@163.com;haowang@mail.njust.edu.cn;wufan@njust.edu.cn;s.tao@njust.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1388-1396.
Sixing LIU, Changbao PEI, Xiaodong YE, Hao WANG, Fan WU, Shifei TAO. Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1388-1396.
"
Metrics | Benchmark | NSGA-Ⅱ | Multi-objective EIe | The proposed ESS-SBMO | |||||||||||
Mean | Best | Worst | SD | Mean | Best | Worst | SD | Mean | Best | Worst | SD | ||||
ONVG | ZDT1 | 24 | 35 | 15 | 12 | 15 | 10 | 52 | 59 | 40 | |||||
ZDT2 | 10 | 19 | 3 | 9 | 11 | 3 | 56 | 63 | 50 | ||||||
ZDT3 | 24 | 27 | 18 | 11 | 13 | 9 | 37 | 55 | 29 | ||||||
HV | ZDT1 | ||||||||||||||
ZDT2 | |||||||||||||||
ZDT3 |
1 | CUI T J, SMITH D R, LIU R P. Metamaterials: theory, design, and applications. New York: Springer, 2009. |
2 |
TAO J Q, XU L L, PEI C B, et al Catfish effect induced by anion sequential doping for microwave absorption. Advanced Functional Materials, 2023, 33 (8): 2211996.
doi: 10.1002/adfm.202211996 |
3 |
WU L P, GAO H, GUO R H, et al MnO2 intercalation-guided impedance tuning of carbon/polypyrrole double conductive layers for electromagnetic wave absorption. Chemical Engineering Journal, 2023, 460, 141749.
doi: 10.1016/j.cej.2023.141749 |
4 | YAO X, HUANG Y Q, LI G Y, et al. Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(8): e23222. |
5 |
LI W W, XU M Z, XU H X, et al Metamaterial absorbers: from tunable surface to structural transformation. Advanced Materials, 2022, 34 (38): 2202509.
doi: 10.1002/adma.202202509 |
6 |
KIM Y J, YOO Y J, KIM K W, et al Dual broadband metamaterial absorber. Optics Express, 2015, 23 (4): 3861- 3868.
doi: 10.1364/OE.23.003861 |
7 |
ZHANG Z, ZHANG L, CHEN X Q, et al Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. Journal of Magnetism and Magnetic Materials, 2020, 497, 166075.
doi: 10.1016/j.jmmm.2019.166075 |
8 | PEI C B, LIU S X, DING Z D, et al. Design of multi-layer metamaterial absorbers using Kriging surrogate model. Proc. of the International Applied Computational Electromagnetics Society Symposium, 2022. DOI: 10.1109/ACES-China56081.2022.10065152. |
9 | MEI H, YANG W Q, YANG D, et al Metamaterial absorbers towards broadband, polarization insensitivity and tunability. Optics & Laser Technology, 2022, 147, 107627. |
10 | CUI T J, QI M Q, WAN X, et al Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications, 2014, 3 (10): e218. |
11 |
TRAN M C, PHAM V H, HO T H, et al Broadband microwave coding metamaterial absorbers. Scientific Reports, 2020, 10 (1): 1810.
doi: 10.1038/s41598-019-56847-4 |
12 |
RAMACHANDRAN T, FARUQUE M R I Impact of compact and novel 1-Bit coding based metamaterial design for microwave absorption applications. Journal of Magnetism and Magnetic Materials, 2022, 563, 170044.
doi: 10.1016/j.jmmm.2022.170044 |
13 | ZHANG J M, WANG G W, WANG T, et al Genetic algorithms to automate the design of metasurfaces for absorption bandwidth broadening. ACS Applied Materials & Interfaces, 2021, 13 (6): 7792- 7800. |
14 |
XIONG Y, CHEN F, CHENG Y Z, et al Ultra-thin optically transparent broadband microwave metamaterial absorber based on indium tin oxide. Optical Materials, 2022, 132, 112745.
doi: 10.1016/j.optmat.2022.112745 |
15 |
ZITZLER E, DEB K, THIELE L Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8 (2): 173- 195.
doi: 10.1162/106365600568202 |
16 | YANG K W, XIA B Y, CHEN G, et al Multi-objective optimization of operation loop recommendation for kill web. Journal of Systems Engineering and Electronics, 2022, 33 (4): 969- 985. |
17 |
DENG W, ZHANG X X, ZHOU Y Q, et al An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 2022, 585, 441- 453.
doi: 10.1016/j.ins.2021.11.052 |
18 |
MICHELI D, VRICELLA A, PASTORE R, et al Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon, 2014, 77, 756- 774.
doi: 10.1016/j.carbon.2014.05.080 |
19 | TOKTAS A, USTUN D. Dual-objective design of multilayer radar absorbing composite material using butterfly optimization algorithm. Proc. of the IEEE International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 2020: 77−81. |
20 |
FORRESTER A, KEANE A J Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 2009, 45 (1/3): 50- 79.
doi: 10.1016/j.paerosci.2008.11.001 |
21 |
ZHEN H X, GONG W Y, LING W Data-driven evolutionary sampling optimization for expensive problems. Journal of Systems Engineering and Electronics, 2021, 32 (2): 318- 330.
doi: 10.23919/JSEE.2021.000027 |
22 |
WANG W J, WU Z P, WANG D H, et al Surrogate-based optimization with adaptive parallel infill strategy enhanced by inaccurate multi-objective search. Engineering Optimization, 2022, 54 (8): 1356- 1373.
doi: 10.1080/0305215X.2021.1928109 |
23 |
JEONG S, MURAYAMA M, YAMAMOTO K Efficient optimization design method using Kriging model. Journal of Aircraft, 2005, 42 (2): 413- 420.
doi: 10.2514/1.6386 |
24 | TOAL D, KEANE A J Performance of an ensemble of ordinary, universal, non-stationary and limit Kriging predictors. Structural & Multidisciplinary Optimization, 2013, 47 (6): 893- 903. |
25 |
KOZIEL S, PIETRENKO-DABROWSKA A Performance-driven yield optimization of high-frequency structures by Kriging surrogates. Applied Sciences, 2022, 12 (7): 3697.
doi: 10.3390/app12073697 |
26 |
ABIODUN O I, JANTAN A, OMOLARA A E, et al State-of-the-art in artificial neural network applications: a survey. Heliyon, 2018, 4 (11): e00938.
doi: 10.1016/j.heliyon.2018.e00938 |
27 |
WANG J H, LIN Z C, FAN Y, et al Design of all-dielectric metasurface-based subtractive color filter by artificial neural network. Materials, 2022, 15 (19): 7008.
doi: 10.3390/ma15197008 |
28 |
GUTMANN H M A radial basis function method for global optimization. Journal of Global Optimization, 2001, 19 (3): 201- 227.
doi: 10.1023/A:1011255519438 |
29 |
MAJDISOVA Z, SKALA V Radial basis function approximations: comparison and applications. Applied Mathematical Modelling, 2017, 51, 728- 743.
doi: 10.1016/j.apm.2017.07.033 |
30 |
ZHOU J, SU X S, CUI G An adaptive Kriging surrogate method for efficient joint estimation of hydraulic and biochemical parameters in reactive transport modeling. Journal of Contaminant Hydrology, 2018, 216, 50- 57.
doi: 10.1016/j.jconhyd.2018.08.005 |
31 | LIU B, GROUT V, NIKOLAEVA A Efficient global optimization of actuator based on a surrogate model assisted hybrid algorithm. IEEE Trans. on Industrial Electronics, 2017, 65 (7): 5712- 5721. |
32 |
PARK S G, NA J G, KIM M J, et al Multi-objective Bayesian optimization of chemical reactor design using computational fluid dynamics. Computers and Chemical Engineering, 2018, 119, 25- 37.
doi: 10.1016/j.compchemeng.2018.08.005 |
33 |
PAL A, ZHU L, WANG Y, et al Constrained surrogate-based engine calibration using lower confidence bound. IEEE/ASME Trans. on Mechatronics, 2021, 26 (6): 3116- 3127.
doi: 10.1109/TMECH.2021.3053246 |
34 |
LIU H T, ONG Y S, CAI J F A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Structural and Multidisciplinary Optimization, 2018, 57 (1): 393- 416.
doi: 10.1007/s00158-017-1739-8 |
35 |
WAUTERS J, KEANE A J, DEGROOTE J Development of an adaptive infill criterion for constrained multi-objective asynchronous surrogate-based optimization. Journal of Global Optimization, 2020, 78 (1): 137- 160.
doi: 10.1007/s10898-020-00903-1 |
36 | COX D D, JOHN S. A statistical method for global optimization. Proc. of the IEEE International Conference on Systems, 1992: 1241−1246. |
37 |
JONES D R A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 2001, 21 (4): 345- 383.
doi: 10.1023/A:1012771025575 |
38 |
JONES D R, SCHONLAU M, WELCH W J Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13 (4): 455- 492.
doi: 10.1023/A:1008306431147 |
39 |
LI M Y, YI B, YANG Y An efficient global optimization method with multi-point infill sampling based on Kriging. Engineering Optimization, 2022, 54 (11): 1801- 1818.
doi: 10.1080/0305215X.2021.1960985 |
40 |
KNOWLES J ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. on Evolutionary Computation, 2006, 10 (1): 50- 66.
doi: 10.1109/TEVC.2005.851274 |
41 |
KEANE A J Statistical improvement criteria for use in multiobjective design optimisation. AIAA Journal, 2006, 44 (4): 879- 891.
doi: 10.2514/1.16875 |
42 | BAUTISTA D C. A sequential design for approximating the pareto front using the expected pareto improvement function. Columbus: The Ohio State University, 2009. |
43 | EMMERICH M. Single-and multi-objective evolutionary design optimization assisted by Gaussian random field metamodels. Dortmund: Technische Universität Dortmund, 2005. |
44 |
ZHAN D W, CHENG Y S, LIU J Expected improvement matrix-based infill criteria for expensive multiobjective optimization. IEEE Trans. on Evolutionary Computation, 2017, 21 (6): 956- 975.
doi: 10.1109/TEVC.2017.2697503 |
45 |
LV Z M, WANG L Q, HAN Z Y, et al Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (3): 838- 849.
doi: 10.1109/JAS.2019.1911450 |
46 |
LI F, GAO L, GARG A, et al Two infill criteria driven surrogate-assisted multi-objective evolutionary algorithms for computationally expensive problems with medium dimensions. Swarm and Evolutionary Computation, 2021, 60, 100774.
doi: 10.1016/j.swevo.2020.100774 |
47 |
KOZIEL S, ABDULLAH M Machine-learning-powered EM-based framework for efficient and reliable design of low scattering metasurfaces. IEEE Trans. on Microwave Theory and Techniques, 2021, 69 (4): 2028- 2041.
doi: 10.1109/TMTT.2021.3061128 |
48 |
ZHANG J Z, TAFLANIDIS A A, MEDINA J C Sequential approximate optimization for design under uncertainty problems utilizing Kriging metamodeling in augmented input space. Computer Methods in Applied Mechanics and Engineering, 2017, 315, 369- 395.
doi: 10.1016/j.cma.2016.10.042 |
49 | YI J X, WU F L, ZHOU Q, et al. An active-learning method based on multi-fidelity Kriging model for structural reliability analysis. Structural and Multidisciplinary Optimization, 2021, 63: 173−195. |
50 |
ZIMMERMANN R On the condition number anomaly of Gaussian correlation matrices. Linear Algebra and its Applications, 2015, 466, 512- 526.
doi: 10.1016/j.laa.2014.10.038 |
51 | JIN Y C, WANG H D, TINKLE C, et al Data-driven evolutionary optimization: an overview and case studies. IEEE Trans. on Evolutionary Computation, 2018, 23 (3): 442- 458. |
52 | SHANG K, ISHIBUCHI H, HE L J, et al A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Trans. on Evolutionary Computation, 2020, 25 (1): 1- 20. |
53 |
DEB K, AGRAWAL S, PRATAP A, et al A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Trans. on Evolutionary Computation, 2002, 6, 182- 197.
doi: 10.1109/4235.996017 |
54 | VAN VELDHUIZEN D A, LAMONT G B. On measuring multiobjective evolutionary algorithm performance. Proc. of the Congress on Evolutionary Computation, 2000: 204−211. |
55 |
ZITZLER E, THIELE L Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. on Evolutionary Computation, 1999, 3 (4): 257- 271.
doi: 10.1109/4235.797969 |
56 |
SONG Z C, MIN P P, YANG L, et al A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 1228- 1232.
doi: 10.1109/LAWP.2022.3162330 |
57 |
KIM J, CACIALLI F, GRANSTRoM M, et al Characterisation of the properties of surface-treated indium-tin oxide thin films. Synthetic Metals, 1999, 101 (1/3): 111- 112.
doi: 10.1016/S0379-6779(98)01127-8 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||