1 |
PETERSON R L, ZIEMER R E, BORTH D E. Introduction to spread-spectrum communications. New Jersey: Prentice hall, 1995: 221−308.
|
2 |
QIU W Q, ZENG Q X, GAO C, et al Fine Doppler shift acquisition algorithm for BeiDou software receiver by a look-up table. Journal of Systems Engineering and Electronics, 2020, 31 (3): 612- 625.
|
3 |
PAUN A F, RUSU-CASANDRA A. On the reduced complexity FFT acquisition for Galileo E1 signal. Proc. of the IEEE International Symposium on Electronics and Telecommunications, 2018. DOI: 10.1109/ISETC.2018.8583908.
|
4 |
PAN Y, ZHANG S, WANG X, et al A fine acquisition algorithm based on fast three-time FRFT for dynamic and weak GNSS signals. Journal of Systems Engineering and Electronics, 2023, 34 (2): 259- 269.
|
5 |
TONG G Y, LI M Q Quickly acquisition technology of spectrum spread signals. Guidance & Fuze, 2017, 38 (1): 48- 51.
|
6 |
CUI S L, WANG D C, HOLTKAMP B, et al. A multi-frequency acquisition algorithm for a GNSS software receiver. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 1082−1085.
|
7 |
XU Y, XU L J, YUAN H, et al Direct P-code acquisition algorithm based on bidirectional overlap technique. Journal of Systems Engineering and Electronics, 2014, 25 (4): 538- 546.
|
8 |
BORNA M, MADANI M H New methods for enhancing fine acquisition in dual folding algorithm of long pseudo noise codes. International Journal of Communication Systems, 2018, 31 (1): e3377.
doi: 10.1002/dac.3377
|
9 |
IWEN M A. A deterministic sub-linear time sparse Fourier algorithm via non-adaptive compressed sensing methods. Proc. of the 19th Annual ACM-SI AM Symposium on Discrete Algorithms, 2008: 20−29.
|
10 |
PLONKA G, WANNENWETSCH K, CUYT A, et al Deterministic sparse FFT for M-sparse vectors. Numerical Algorithms, 2018, 78 (1): 133- 159.
doi: 10.1007/s11075-017-0370-5
|
11 |
HASSANIEH H, INDYK P, KATABI D, et al. Simple and practical algorithm for sparse Fourier transform. Proc. of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, 2012: 1183−1194.
|
12 |
JIANG Z K, CHEN J, LI B Empirical evaluation of typical sparse fast Fourier transform algorithms. IEEE Access, 2021, 9, 97100- 97119.
doi: 10.1109/ACCESS.2021.3095071
|
13 |
WANG S D, PATEL V M, PETROPULU A Multidimensional sparse Fourier transform based on the Fourier projection-slice theorem. IEEE Trans. on Signal Processing, 2018, 67 (1): 54- 69.
|
14 |
WEI D, HU H Sparse discrete linear canonical transform and its applications. Signal Processing, 2021, 183, 108046.
doi: 10.1016/j.sigpro.2021.108046
|
15 |
SONG Z, SUN B C, WEINSTEIN O, et al. Sparse Fourier transform over lattices: a unified approach to signal reconstruction. http://arxiv.org/abs/2205.00658.
|
16 |
BIN L, JIANG Z K, CHEN J. On performance of the multiscale sparse fast Fourier transform algorithm. Circuits, Systems, and Signal Processing, 2022, 41: 4547−4569.
|
17 |
ZHANG H S, SHAN T, LIU S H, et al. Parameter optimization of sparse Fourier transform for radar target detection. Proc. of the IEEE Radar Conference, 2020. DOI: 10.1109/RadarConf2043947.2020.9266417.
|
18 |
ZHANG H, SHAN T, LIU S, et al Performance evaluation and parameter optimization of sparse Fourier transform. Signal Processing, 2021, 179, 107823.
doi: 10.1016/j.sigpro.2020.107823
|
19 |
LI B, JIANG Z, CHEN J On performance of sparse fast Fourier transform algorithms using the aliasing filter. Electronics, 2021, 10 (9): 1117.
doi: 10.3390/electronics10091117
|
20 |
ZHANG H C, SHAN T, LIU S H, et al Optimized sparse fractional Fourier transform: principle and performance analysis. Signal Processing, 2020, 174, 107646.
doi: 10.1016/j.sigpro.2020.107646
|
21 |
YU X H, CHEN X L, HUANG Y, et al Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform. IEEE Geoscience and Remote Sensing Letters, 2019, 17 (6): 978- 982.
|
22 |
XU B, HAN T L, ZHANG Z, et al. Research on sub-Nyquist rate sampling method based on sparse Fourier transform theory. Proc. of the IEEE 4th International Conference on Electronics Technology, 2021: 742−747.
|
23 |
PANG C S, LIU S H, HAN Y High-speed target detection algorithm based on sparse Fourier transform. IEEE Access, 2018, 6, 37828- 37836.
doi: 10.1109/ACCESS.2018.2853180
|
24 |
YU X H, CHEN X L, HUANG Y, et al Radar moving target detection in clutter background via adaptive dual-threshold sparse Fourier transform. IEEE Access, 2019, 7, 58200- 58211.
doi: 10.1109/ACCESS.2019.2914232
|
25 |
LU J N, TAN Z W, LAU A P T, et al Modulation format identification assisted by sparse-fast-Fourier-transform for hitless flexible coherent transceivers. Optics Express, 2019, 27 (5): 7072- 7086.
doi: 10.1364/OE.27.007072
|
26 |
LU J N, WU Q, JIANG H X, et al Efficient timing/frequency synchronization based on sparse fast Fourier transform. Journal of Lightwave Technology, 2019, 37 (20): 5299- 5308.
doi: 10.1109/JLT.2019.2932075
|
27 |
HU J X, WANG Z, QIU Q, et al. Sparse fast Fourier transform on GPUs and multi-core CPUs. Proc. of the IEEE 24th International Symposium on Computer Architecture and High Performance Computing, 2012: 83−91.
|
28 |
LIU Y F, GONG H H, ZHOU Y H. Sparse fast Fourier transform implementation on multicore DSP. Proc. of the 2nd International Conference on Electromechanical Control Technology and Transportation, 2017: 301−304.
|
29 |
KORTLI Y, GABSI S, JRIDI M, et al Hw/Sw co-design technique for 2D fast Fourier transform algorithm on Zynq SoC. Integration, 2022, 82, 78- 88.
doi: 10.1016/j.vlsi.2021.09.005
|
30 |
GARRIDO M. A survey on pipelined FFT hardware architectures. Journal of Signal Processing Systems, 2021, 56(12): 2634−2643.
|
31 |
WANG C H, GAO F. Low complexity DSSS acquisition method of LEO satellite communication ASIC. Proc. of the IEEE 2nd International Conference on Electronic Information and Communication Technology, 2019: 84−88.
|