1 |
BALLIN M G, WING D J, HUGHES M F, et al. Airborne separation assurance and traffic management-research of concepts and technology[C]//Proc. of the Guidance, Navigation, and Control Conference and Exhibit, 1999: 313-324.
|
2 |
OCHIENG W Y , STUDIC M , MAJUMDAR A . Evolution of air traffic management concept of operations and its impact on the system architecture[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33 (4): 403- 413.
|
3 |
STASI L , MARCHITTO M , ANTOLI A , et al. Approximation of on-line mental workload index in ATC simulated multitasks[J]. Journal of Air Transport Management, 2010, 16 (6): 330- 333.
doi: 10.1016/j.jairtraman.2010.02.004
|
4 |
ZHANG M , HANG Y . Integrated evluation of the safety controller's workload based on improved extension evaluation model[J]. Journal of Applied Sciences, 2013, 13 (15): 2969- 2973.
doi: 10.3923/jas.2013.2969.2973
|
5 |
郝斯琪. 基于四维航迹运行下的航空器冲突探测与解脱方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
HAO S Q. Research on aircraft conflict detection and resolution methods based on four-dimensional trajectory operation[D]. Harbin: Harbin Institute of Technology, 2020.
|
6 |
汤新民, 郑鹏程. 基于大地坐标系的IMM航空器短期航迹外推[J]. 系统工程与电子技术, 2022, 44 (7): 2293- 2301.
doi: 10.12305/j.issn.1001-506X.2022.07.26
|
|
TANG X M , ZHENG P C . Short term track extrapolation of IMM aircraft based on geodetic coordinate system[J]. Systems Engineering and Electronics, 2022, 44 (7): 2293- 2301.
doi: 10.12305/j.issn.1001-506X.2022.07.26
|
7 |
ZHANG Y, CHU P, TIAN Y G, et al. A conflict-free trajectory generation method for pre-tactical phase in trajectory based operation[C]//Proc. of the IOP Conference Series: Earth and Environmental Science, 2020.
|
8 |
WEITZ L A. Derivation of a point-mass aircraft model used for fast-time simulation[R]. McLean: MITRE, 2015.
|
9 |
WEITZ L A . Investigating string stability of a time-history control law for interval management[J]. Transportation Research Part C: Emerging Technologies, 2013, 33, 257- 271.
doi: 10.1016/j.trc.2011.10.002
|
10 |
SUN M H , RAND K , FLEMING C . 4D waypoint generation for conflict-free trajectory based operation[J]. Aerospace Science and Technology, 2019, 88, 350- 361.
doi: 10.1016/j.ast.2019.03.035
|
11 |
王立超, 张洪海, 刘皞, 等. 面向意图的通用航空器冲突解脱自主决策方法[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44 (5): 855- 858.
|
|
WANG L C , ZHANG H H , LIU Z , et al. Intention oriented autonomous decision-making method for conflict resolution of general aircraft[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44 (5): 855- 858.
|
12 |
裴柯欣. 复杂天气条件下的无人飞行器航迹规划研究[D]. 广汉: 中国民用航空飞行学院, 2021.
|
|
PEI K X, Research on UAV track planning under complex weather conditions[D]. Guanghan: China Civil Aviation Flight Academy, 2021.
|
13 |
MONDOLONI S , ROZEN N . Aircraft trajectory prediction and synchronization for air traffic management applications[J]. Progress in Aerospace Sciences, 2020, 119, 100640.
doi: 10.1016/j.paerosci.2020.100640
|
14 |
HAO S Q , CHENG S W , ZHANG Y P . A multi-aircraft conflict detection and resolution method for 4D trajectory-based ope- ration[J]. Chinese Journal of Aeronautics, 2018, 31 (7): 1579- 1593.
doi: 10.1016/j.cja.2018.04.017
|
15 |
TRAN P N , NGUYEN H Q V , PHAM D T , et al. Aircraft trajectory prediction with enriched intent using encoder-decoder architecture[J]. IEEE Access, 2022, 10, 17881- 17896.
doi: 10.1109/ACCESS.2022.3149231
|
16 |
HU Y D , GAO C S , LI J L , et al. Novel trajectory prediction algorithms for hypersonic gliding vehicles based on maneuver mode on-line identification and intent inference[J]. Measurement Science and Technology, 2021, 32 (11): 115012.
doi: 10.1088/1361-6501/ac1284
|
17 |
FU Q X , LIANG X L , ZHANG J Q , et al. Intent inference based trajectory prediction and smooth for UAS in low-altitude airspace with geofence[J]. CMC-Computers Materials & Continua, 2020, 63 (1): 417- 444.
|
18 |
SUN F , CHEN Y , XU X , et al. Velocity obstacle-based conflict resolution and recovery method[J]. The Aeronautical Journal, 2022, 126 (1296): 345- 364.
doi: 10.1017/aer.2021.67
|
19 |
汤新民, 郑鹏程. 航路序贯飞行条件下的航空器自主间隔控制[J]. 南京航空航天大学学报, 2019, 51 (6): 742- 748.
|
|
TANG X M , ZHENG P C . Aircraft autonomous interval control under the condition of route sequential flight[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51 (6): 742- 748.
|
20 |
ZHANG Y , SHORTLE J , SHERRY L , et al. Methodology for collision risk assessment of an airspace flow corridor concept[J]. Reliability Engineering & System Safety, 2015, 142 (5): 444- 455.
|
21 |
TIAN Y , DONG Y L , YE B J , et al. A framework for the assessment of distributed self-separation procedures for air traffic in flow corridors[J]. IEEE Access, 2019, 7, 123544- 123557.
doi: 10.1109/ACCESS.2019.2937655
|
22 |
MING Z H , ZHANG M , TANG X M , et al. Structural modelling and deceleration algorithm for a follow aircraft on performance-based navigation airway based on multi-agent technique[J]. Cybernetics and Information Technologies, 2015, 15 (6): 46- 56.
doi: 10.1515/cait-2015-0066
|
23 |
王莉莉, 张新瑜, 张兆宁. 空中高速路交通流的跟驰现象及流量模型[J]. 西南交通大学学报, 2012, 47 (1): 158- 162.
|
|
WANG L L , ZHANG X Y , ZHANG Z N . Car-following phenomenon and flow model of air highway traffic flow[J]. Journal of Southwest Jiaotong University, 2012, 47 (1): 158- 162.
|
24 |
BRITTAIN M , WEI P . Scalable autonomous separation assurance with heterogeneous multi-agent reinforcement learning[J]. IEEE Trans. on Automation Science and Engineering, 2022,
|
25 |
NAKAMURA Y , TAKEICHI N . A self-separation algorithm for width-limited high density air corridor[J]. Proc.of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2016, 230 (9): 1632- 1640.
doi: 10.1177/0954410015620446
|
26 |
NAKAMURA Y , TAKEICHI N , KAGEYAMA K . A self-separation algorithm using relative speed for high density air corridor[J]. Transactions of the Japan Society for Aeronautical & Space Sciences, 2014, 57 (6): 336- 342.
|
27 |
NAKAMURA Y, TAKEICHI N. A self-separation algorithm for high-density air corridor allocated to optimal flight trajectories[C]//Proc. of the AIAA Modeling and Simulation Techno-logies Conference, 2016.
|
28 |
XIE Y B , PONGSAKORNSATHIEN N , GARDI A , et al. Explanation of machine-learning solutions in air-traffic management[J]. Aerospace, 2021, 8 (8): 224.
doi: 10.3390/aerospace8080224
|
29 |
GUO W, BRITTAIN M, WEI P. Safety enhancement for deep reinforcement learning in autonomous separation assurance[C]// Proc. of the IEEE International Intelligent Transportation Systems Conference, 2021: 348-354.
|
30 |
DOBRUSZKES F . Why do planes not fly the shortest routes? A review[J]. Applied Geography, 2019, 109, 102033.
doi: 10.1016/j.apgeog.2019.06.001
|
31 |
RTCA DO 361. Minimum operational performance standards (MOPS) for flight-deck interval management (FIM)[S]. Washington Radio Technical Commission for Aeronautics, 2015.
|
32 |
FRANCO A, RIVAS D, VALENZUELA A. Optimal aircraft path planning considering wind uncertainty[C]//Proc. of the 7th European Conference for Aeronautics and Space Sciences, 2017: 3-6.
|
33 |
VALENZUELA A, FRANCO A, RIVAS D. Sector demand analysis under meteorological uncertainty[C]//Proc. of the 7th European Conference for Aeronautics and Space Sciences, 2017: 1-15.
|
34 |
JIANG S Y , LUO X , HE L . Research on method of trajectory prediction in aircraft flight based on aircraft performance and historical track data[J]. Mathematical Problems in Engineering, 2021, 2021, 11.
|
35 |
LI R B , LU C , LIU J Y , et al. Air data estimation algorithm under unknown wind based on information fusion[J]. Journal of Aerospace Engineering, 2018, 31 (5): 04018072.
doi: 10.1061/(ASCE)AS.1943-5525.0000889
|
36 |
Eurocontol Experimental Center. Model accuracy summary report for the base of aircraft data (BADA), Revision 3.10[R]. Brest: Eurocontrol Experimental Central, 2012.
|