1 |
ZHENG S Q, LI X D, ZHU L L. Optimal time-efficient UAV area coverage path planning based on raster map[C]//Proc. of the International Conference on Advanced Robotics and Mechatronics, 2023: 727-732.
|
2 |
王建峰, 贾高伟, 郭正, 等. 多无人机协同任务规划方法研究综述[J/OL]. 系统工程与电子技术: 1-18[2024-09-23]. http://kns.cnki.net/kcms/detail/11.2422.TN.20230419.1331.010.html.
|
|
WANG J F, JIA G W, GUO Z, et al. Research status and development of multi-UAV system mission planning[J/OL]. Systems Engineering and Electronics: 1-18[2024-09-23]. http://kns.cnki.net/kcms/detail/11.2422.TN.20230419.1331.010.html.
|
3 |
TCHINDA N E , PANOFF K M , KWADJO T D , et al. Semi-supervised image stitching from unstructured camera arrays[J]. Sensors, 2023, 23 (23): 9481- 9501.
doi: 10.3390/s23239481
|
4 |
杨丹宁. 基于受灾点应急需求分析的地震初期应急物资分配问题研究[D]. 北京: 北京交通大学, 2023.
|
|
YANG D N. A study on the distribution of emergency supplies at the early stage of earthquake based on the analysis of emergency needs at the affected sites[D]. Beijing: Beijing Jiao Tong University, 2023.
|
5 |
李阳, 张玉梅, 赵彦东, 等. 基于云贝叶斯网络的毁伤效果评估方法[J]. 火力与指挥控制, 2020, 45 (3): 144- 149.
|
|
LI Y , ZHANG Y M , ZHAO Y D , et al. Method of battle da-mage assessment based on cloudy Bayesian network[J]. Fire Control & Command Control, 2020, 45 (3): 144- 149.
|
6 |
LI X D , FIR D K , JEAN D . Multi-source information fusion: progress and future[J]. Chinese Journal of Aeronautics, 2024, 37 (7): 24- 58.
doi: 10.1016/j.cja.2023.12.009
|
7 |
王广学, 黄晓涛, 周智敏. 基于图像分割的VHF SAR叶簇隐蔽目标差值变化检测[J]. 电子学报, 2020, 38 (9): 1969- 1974.
|
|
WANG G X , HUANG X T , ZHOU Z M . VHF SAR difference change detection of target in foliage based on image segmentation[J]. Acta Electronica Sinica, 2020, 38 (9): 1969- 1974.
|
8 |
CHEN J , CHEN X H , CUI X H , et al. Change vector analysis in posterior probability space: a new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8 (2): 317- 321.
|
9 |
MARIUS P , ANDREAS D , TOBIAS U , et al. Automated extraction of annual erosion rates for arctic permafrost coasts using sentinel-1, deep learning, and change vector analysis[J]. Remote Sensing, 2022, 14 (15): 3656- 3681.
doi: 10.3390/rs14153656
|
10 |
苗添, 曾虹程, 王贺, 等. 基于迭代阈值分割的星载SAR洪水区域快速提取[J]. 系统工程与电子技术, 2022, 44 (9): 2760- 2768.
doi: 10.12305/j.issn.1001-506X.2022.09.08
|
|
MIAO T , ZENG H C , WANG H , et al. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data[J]. Systems Engineering and Electronics, 2022, 44 (9): 2760- 2768.
doi: 10.12305/j.issn.1001-506X.2022.09.08
|
11 |
杨青青, 樊桂花. 基于改进模糊综合评判法的建筑物毁伤效果评估[J]. 系统工程与电子技术, 2018, 40 (9): 2026- 2031.
doi: 10.3969/j.issn.1001-506X.2018.09.19
|
|
YANG Q Q , FAN G H . Battle damage assessment of building based on improved fuzzy comprehensive evaluation method[J]. Systems Engineering and Electronics, 2018, 40 (9): 2026- 2031.
doi: 10.3969/j.issn.1001-506X.2018.09.19
|
12 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proc. of the Medical Image Computing and Computer-assisted Intervention, 2015: 234-241.
|
13 |
XIE E Z , WANG W H , YU Z D , et al. SegFormer: simple and efficient design for semantic segmentation with transfor-mers[J]. Advances in Neural Information Processing Systems, 2021, 34, 12077- 12090.
|
14 |
ZHONG A Q , FU Q , HUANG D F , et al. A topology based automatic registration method for infrared and polarized coupled imaging[J]. Applied Sciences, 2022, 12 (24): 12596- 12607.
doi: 10.3390/app122412596
|
15 |
DENG X , LIU E P , LI S X , et al. Interpretable multi-model image registration network based on disentangled convolutional sparse coding[J]. IEEE Trans.on Image Processing, 2023, 32, 1078- 1091.
doi: 10.1109/TIP.2023.3240024
|
16 |
徐艺博, 于清华, 王炎娟, 等. 基于多源信息融合的巡飞弹对地目标识别与毁伤评估[J]. 系统仿真学报, 2024, 36 (2): 511- 521.
|
|
XU Y B , YU Q H , WANG Y J , et al. Ground target recognition and damage assessment of patrol missiles based on multi-source information fusion[J]. Journal of System Simulation, 2024, 36 (2): 511- 521.
|
17 |
李琳, 孙世岩, 曾雅琴, 等. 基于改进CRITIC-Bayes网络的激光武器毁伤效果评估方法[J]. 兵器装备工程学报, 2023, 44 (7): 109- 115.
|
|
LI L , SUN S Y , ZENG Y Q , et al. Evaluation methods of laser weapon damage effect based on improved CRITIC-Bayes network[J]. Journal of Ordnance Equipment Engineering, 2023, 44 (7): 109- 115.
|
18 |
NIA K R, MORI G. Building damage assessment using deep learning and ground-level image data[C]//Proc. of the 14th Conference on Computer and Robot, 2017: 95-102.
|
19 |
麻连伟, 宁卫远, 焦利伟, 等. 基于U-Net卷积神经网络的遥感影像变化检测方法研究[J]. 能源与环保, 2022, 44 (11): 102- 106.
|
|
MA L W , NING W Y , JIAO L W , et al. Research on remote sensing image change detection method based on U-Net convolutional neural network[J]. China Energy and Environmental Protection, 2022, 44 (11): 102- 106.
|
20 |
FAN Z P , WANG S Q , PU X T , et al. Fusion-former: fusion features across transformer and convolution for building change detection[J]. Electronics, 2023, 12 (23): 4823- 4836.
doi: 10.3390/electronics12234823
|
21 |
WANG X D , TIAN M L , ZHANG Z J , et al. SDSNet: building extraction in high-resolution remote sensing images using a deep convolutional network with cross-layer feature information interaction filtering[J]. Remote Sensing, 2023, 16 (1): 169- 191.
doi: 10.3390/rs16010169
|
22 |
王凌霄, 贾婧. 基于改进DeepLabv3plus算法的遥感图像海岛建筑提取方法[J]. 热带地理, 2021, 41 (4): 834- 844.
|
|
WANG L X , JIA J . Extraction method of island buildings in remote sensing images based on improved DeepLabv3plus algorithm[J]. Tropical Geography, 2021, 41 (4): 834- 844.
|
23 |
ZHENG Z , ZHONG Y F , WANG J J , et al. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: from natural disasters to man-made disasters[J]. Remote Sensing of Environment, 2021, 265, 112636- 112653.
doi: 10.1016/j.rse.2021.112636
|
24 |
SHENG W J , LI X D . Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network[J]. Pattern Recognition, 2021, 114, 107868- 107880.
doi: 10.1016/j.patcog.2021.107868
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
26 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
27 |
MILLETARI F, NAVAB N, AHMADI S. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proc. of the 4th Conference on 3D Vision, 2016: 565-571.
|
28 |
GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD: a dataset for assessing building damage from satellite imagery[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019: 10-17.
|
29 |
LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[C]// Proc. of the International Conference on Learning Representations, 2018.
|
30 |
GUPTA R, HOSFELT R, SAJEEV S, et al. xBD: a dataset for assessing building damage from satellite imagery[EB/OL]. [2024-01-30]. https://arXiv preprint arXiv:1911.09296, 2019.
|
31 |
WEBER E, KANE H. Building disaster damage assessment in sate- llite imagery with multi-temporal fusion[EB/OL]. [2024-01-30]. https://arXiv preprint arXiv:2004.05525, 2020.
|