系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (10): 3257-3264.doi: 10.12305/j.issn.1001-506X.2024.10.02

• 电子技术 • 上一篇    

基于改进MKELM的红外空间锥体目标识别

王彩云1,*, 常韵1, 李晓飞2, 王佳宁2, 吴钇达1, 张慧雯1   

  1. 1. 南京航空航天大学航天学院, 江苏 南京 211106
    2. 北京电子工程总体研究所, 北京 100854
  • 收稿日期:2023-06-16 出版日期:2024-09-25 发布日期:2024-10-22
  • 通讯作者: 王彩云
  • 作者简介:王彩云(1975—), 女, 副教授, 博士, 主要研究方向为图像处理、目标识别
    常韵(2000—), 女, 硕士研究生, 主要研究方向为目标检测与识别
    李晓飞(1984—), 女, 研究员, 博士, 主要研究方向为目标识别系统总体设计
    王佳宁(1988—), 女, 副研究员, 博士, 主要研究方向为目标识别系统总体设计
    吴钇达(1998—), 男, 博士研究生, 主要研究方向为目标检测与识别
    张慧雯(1999—), 女, 硕士研究生, 主要研究方向为目标检测与识别
  • 基金资助:
    国家自然科学基金(61301211);国家留学基金(201906835017)

Infrared spatial cone-shaped target recognition based on improved MKELM

Caiyun WANG1,*, Yun CHANG1, Xiaofei LI2, Jianing WANG2, Yida WU1, Huiwen ZHANG1   

  1. 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    2. Beijing Institute of Electronic Systems Engineering, Beijing 100854, China
  • Received:2023-06-16 Online:2024-09-25 Published:2024-10-22
  • Contact: Caiyun WANG

摘要:

针对远距离探测时仅能获取目标的红外辐射强度序列、样本量有限、信噪比低而导致目标识别困难的问题, 提出一种基于改进多核极限学习机(multiple kernel extreme learning machine, MKELM)的红外空间锥体目标识别方法。首先对红外辐射强度序列进行变分模态分解(variational mode decomposition, VMD)并重构, 然后对重构序列进行时域特征提取, 最后采用鲸鱼优化算法(whale optimization algorithm, WOA)优化MKELM的参数组合, 在仿真生成的空间锥体目标红外辐射强度序列数据集上进行目标分类识别实验。实验结果验证了所提算法的有效性, 同时表明所提方法具有较好的识别准确性和鲁棒性。

关键词: 红外辐射强度序列, 空间目标识别, 变分模态分解, 鲸鱼优化算法, 多核极限学习机

Abstract:

An infrared spatial cone-shaped target recognition method based on improved multiple kernel extreme learning machine (MKELM) is proposed in order to solve the problems that infrared radiation intensity sequence is the only data available at long-range detection, the sample size is limited and the signal-to-noise ratio (SNR) is usually low which lead to the difficulty of target recognition. Firstly, variational mode decomposition (VMD) and reconstruction are performed on infrared radiation intensity sequence. Then, time-domain features are extracted based on reconstructed sequences. Finally, whale optimization algorithm (WOA) is used to find the optimal combination of parameters for MKELM, and target recognition experiment is carried out on the simulated spatial cone-shaped target infrared radiation intensity sequence dataset by using improved MKELM. The experimental results verify the effectiveness, recognition accuracy and robustness of the proposed method.

Key words: infrared radiation intensity sequence, spatial target recognition, variational mode decomposition (VMD), whale optimization algorithm (WOA), multiple kernel extreme learning machine (MKELM)

中图分类号: