1 |
韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51 (4): 438- 461.
|
|
HAN J H , WEI Y T , PENG Z M , et al. Infrared dim and small target detection: a review[J]. Infrared and Laser Engineering, 2022, 51 (4): 438- 461.
|
2 |
WU D Y , LU H Z , HU M F , et al. Independent random recurrent neural networks for infrared spatial point targets classification[J]. Applied Sciences, 2019, 9 (21): 4622.
doi: 10.3390/app9214622
|
3 |
BAGNALL A , LINES J , BOSTROM A , et al. The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Know-ledge Discovery, 2017, 31, 606- 660.
doi: 10.1007/s10618-016-0483-9
|
4 |
YE L , KEOGH E . Time series shapelets: a novel technique that allows accurate, interpretable and fast classification[J]. Data Mining and Knowledge Discovery, 2011, 22 (1-2): 149- 182.
doi: 10.1007/s10618-010-0179-5
|
5 |
SILBERMAN G L . Parametric classification techniques for theater ballistic missile defense[J]. Johns Hopkins APL Technical Digest, 1998, 19 (3): 323.
|
6 |
张兵. 光学图像末制导中的点目标检测与识别算法研究[D]. 长沙: 国防科学技术大学, 2005.
|
|
ZHANG B. Point target detection and recognition algorithms in optical image terminal homing system[D]. Changsha: National University of Defense Technology, 2005.
|
7 |
李鑫. 基于XCS的目标灰度时间序列特征提取方法研究[D]. 长沙: 国防科学技术大学, 2017.
|
|
LI X. Research on feature extraction methods of time series of gray level of target based on XCS[D]. Changsha: National University of Defense Technology, 2017.
|
8 |
刘赛. 弹道导弹红外辐射特性测量及弹头目标识别技术研究[D]. 长春: 中国科学院大学, 2023.
|
|
LIU S. Research on infrared radiation characteristic measurement and warhead recognition technology of ballistic missiles[D]. Changchun: Chinese Academy of Sciences, 2023.
|
9 |
ZHAO B D , LU H Z , CHEN S F , et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics, 2017, 28 (1): 162- 169.
doi: 10.21629/JSEE.2017.01.18
|
10 |
KARIM F , MAJUMDAR S , DARABI H , et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2017, 6, 1662- 1669.
|
11 |
ZHENG Y , LIU Q , CHEN E H , et al. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification[J]. Frontiers of Computer Science, 2016, 10, 96- 112.
doi: 10.1007/s11704-015-4478-2
|
12 |
CUI Z C, CHEN W L, CHEN Y X. Multi-scale convolutional neural networks for time series classification[EB/OL]. [2023-04-16]. https://arXiv.org/abs/1603.06995.
|
13 |
SHEN L , WANG Y Z . TCCT: tightly-coupled convolutional transformer on time series forecasting[J]. Neurocomputing, 2022, 480, 131- 145.
doi: 10.1016/j.neucom.2022.01.039
|
14 |
YANG C H H, TSAI Y Y, CHEN P Y. Voice2series: reprogramming acoustic models for time series classification[C]//Proc. of the International Conference on Machine Learning, 2021: 11808-11819.
|
15 |
冯洁琼. 基于红外辐射变化波形的弹道目标识别神经网络算法研究[D]. 长沙: 国防科学技术大学, 2016.
|
|
FENG J Q. Research on neural network algorithm for ballistic target recognition based on waveform of infrared radiation[D]. Changsha: National University of Defense Technology, 2016.
|
16 |
DENG Q Q , LU H Z , HU M F , et al. Exo-atmospheric infrared objects classification using recurrence-plots-based convolutional neural networks[J]. Applied Optics, 2019, 58 (1): 164- 171.
doi: 10.1364/AO.58.000164
|
17 |
YU B Z, LU H Z, TAO H M. A deep learning method with wavelet packet transform for infrared target recognition[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2021.
|
18 |
ZHANG S H, CHEN X, RAO P, et al. Visualization of radiation intensity sequences for space infrared target recognition[C]//Proc. of the Earth and Space: From Infrared to Terahertz, 2023, 12505: 546-553.
|
19 |
张晔, 侯毅, 欧阳克威, 等. 单变量序列数据分类方法综述[J]. 系统工程与电子技术, 2023, 45 (2): 313- 335.
|
|
ZHANG Y , HOU Y , OUYANG K W , et al. Survey of univariate sequence data classification methods[J]. Systems Engineering and Electronics, 2023, 45 (2): 313- 335.
|
20 |
王彩云, 赵焕玥, 李晓飞, 等. 基于改进Delaunay三角剖分的空间目标红外辐射成像方法[J]. 激光与红外, 2020, 50 (2): 161- 167.
|
|
WANG C Y , ZHAO H Y , LI X F , et al. IR radiation imaging method of space target based on improved Delaunay triangulation[J]. Laser & Infrared, 2020, 50 (2): 161- 167.
|
21 |
DENG Q Q , LU H Z , XIAO S Z , et al. Analysis of infrared signatures of exo-atmosphere micro-motion objects based on inertial parameters[J]. Infrared Physics & Technology, 2018, 88, 32- 40.
|
22 |
李享, 李劲东, 王玉莹, 等. 中段飞行弹道导弹表面温度与辐射特性计算[J]. 红外技术, 2022, 44 (2): 134- 139.
|
|
LI X , LI J D , WANG Y Y , et al. Calculation of temperature and radiation characteristics of midcourse ballistic missiles[J]. Infrared Technology, 2022, 44 (2): 134- 139.
|
23 |
唐文博. 复杂场景下弹道中段雷达目标仿真与识别研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
TANG W B. Research on target simulation and recognition of midcourse ballistic radar in complex scene[D]. Harbin: Harbin Institute of Technology, 2021.
|
24 |
于秉志, 卢焕章, 陶华敏, 等. 引入探测器特性的空间目标红外灰度序列仿真研究[J]. 激光与红外, 2021, 51 (8): 1018- 1024.
|
|
YU B Z , LU H Z , TAO H M , et al. A simulation study of space target infrared grayscale series with detector characteristics[J]. Laser & Infrared, 2021, 51 (8): 1018- 1024.
|
25 |
冉运超. 红外探测器成像真实感建模与仿真方法研究及评价[D]. 武汉: 华中科技大学, 2017.
|
|
RAN Y C. Research on method of improving synthetic infrared image fidelity and quality evaluation[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
26 |
MA Y , HU M F , LU H Z , et al. Recurrent neural networks for discrimination of exo-atmospheric targets based on infrared radiation signature[J]. Infrared Physics & Technology, 2019, 96, 123- 132.
|
27 |
王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44 (3): 204- 211.
|
|
WANG W G , WEI Y B , TENG X D . Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta Energiae Solaris Sinica, 2023, 44 (3): 204- 211.
|
28 |
HUANG G B , ZHOU H M , DING X J , et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part B(Cybernetics), 2011, 42 (2): 513- 529.
|
29 |
LI Z B , JIANG W L , ZHANG S , et al. A hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition and wavelet kernel extreme learning machine methods[J]. Sensors, 2021, 21 (8): 2599.
|
30 |
夏悠然, 管军, 易文俊. 基于改进粒子群优化极限学习机的弹丸参数辨识[J]. 系统工程与电子技术, 2023, 45 (2): 521- 529.
|
|
XIA Y R , GUAN J , YI W J . Projectile parameter identification: extreme learning machine optimized by improved particle swarm[J]. Systems Engineering and Electronics, 2023, 45 (2): 521- 529.
|
31 |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
|
32 |
WANG Z G, YAN W Z, OATES T. Time series classification from scratch with deep neural networks: a strong baseline[C]//Proc. of the International Joint Conference on Neural Networks, 2017: 1578-1585.
|
33 |
DEMPSTER A , PETITJEAN F , WEBB G I . ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels[J]. Data Mining and Knowledge Discovery, 2020, 34 (5): 1454- 1495.
|