1 |
曹军海, 郭一鸣, 张闯, 等. 复杂装备维修保障模式和人力资源仿真优化研究[J]. 系统仿真学报, 2021, 33 (10): 2307- 2314.
|
|
CAO J H , GUO Y M , ZHANG C , et al. Research on simulation and optimization of maintenance support mode and human resources auocation for complex equipment[J]. Journal of System Simulation, 2021, 33 (10): 2307- 2314.
|
2 |
杨帆, 王铁宁, 高晟. 面向任务的装备器材需求预测[J]. 火力与指挥控制, 2021, 46 (4): 48- 53.
doi: 10.3969/j.issn.1002-0640.2021.04.009
|
|
YANG F , WANG T N , GAO S . Demand forecasting of equipment materials oriented to tasks[J]. Fire Control & Command Control, 2021, 46 (4): 48- 53.
doi: 10.3969/j.issn.1002-0640.2021.04.009
|
3 |
王琮, 沈会良, 夏永祥, 等. 装备保障体系关键节点分析[J]. 系统工程与电子技术, 2022, 44 (10): 3134- 3142.
doi: 10.12305/j.issn.1001-506X.2022.10.17
|
|
WANG C , SHEN H L , XIA Y X , et al. Analysis of critical nodes in equipment support system[J]. Systems Engineering and Electronics, 2022, 44 (10): 3134- 3142.
doi: 10.12305/j.issn.1001-506X.2022.10.17
|
4 |
王坚浩, 张亮, 史超, 等. 装备保障任务分配建模与DLS-BCIWBA算法求解[J]. 系统工程与电子技术, 2018, 40 (9): 1979- 1985.
doi: 10.3969/j.issn.1001-506X.2018.09.13
|
|
WANG J H , ZHANG L , SHI C , et al. Task allocation modeling and solving algorithm for equipment support using DLS-BCIWBA[J]. Systems Engineering and Electronics, 2018, 40 (9): 1979- 1985.
doi: 10.3969/j.issn.1001-506X.2018.09.13
|
5 |
李峻森, 方依宁, 张云安, 等. 面向任务的装备保障体系多Agent建模与评估方法[J]. 系统工程与电子技术, 2023, 45 (1): 279- 290.
doi: 10.12305/j.issn.1001-506X.2023.01.33
|
|
LI J S , FANG Y N , ZHANG Y A , et al. Multi-agent modeling and evaluation method for mission-oriented equipment support SoS[J]. Systems Engineering and Electronics, 2023, 45 (1): 279- 290.
doi: 10.12305/j.issn.1001-506X.2023.01.33
|
6 |
MAO W T , LIU J , CHEN J X , et al. An interpretable deep transfer learning-based remaining useful life prediction approach for bearings with selective degradation knowledge fusion[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 3508616.
|
7 |
MAO W T , LIU K Y , ZHANG Y N , et al. Self-supervised deep tensor domain-adversarial regression adaptation for online remaining useful life prediction across machines[J]. IEEE Trans.on Instrumentation and Measurement, 2023, 72, 2509916.
|
8 |
LIU P P , MING W , HUANG C C . Intelligent modeling of abnormal demand forecasting for medical consumables in smart city[J]. Environmental Technology & Innovation, 2020, 20 (1): 1104- 1111.
|
9 |
BABAI M Z , CHEN H , SYNTETOS A A , et al. A compound-poisson Bayesian approach for spare parts inventory forecasting[J]. International Journal of Production Economics, 2020, 232 (8): 107954.
|
10 |
BAISARIYEV M , BAKYTZHANULY A , SERIK Y , et al. Demand forecasting methods for spare parts logistics for aviation: a real-world implementation of the bootstrap method[J]. Procedia Manufacturing, 2021, 55 (11): 500- 506.
|
11 |
GABRIEL P , MARCO C . Computational optimal transport[M]. Cham: Springer, 2018.
|
12 |
CUTURI M. Sinkhorn distances: lightspeed computation of optimal transport[C]//Proc. of the 26th International Confe-rence on Neural Information Processing Systems, 2013.
|
13 |
GENEVAY A, PEYRE G, CUTURI M. Learning generative models with sinkhorn divergences[C]//Proc. of the 21st International Conference on Artificial Intelligence and Statistics, 2018.
|
14 |
GENEVAY A, CHIZAT L, BACH F, et al. Sample complexity of sinkhorn divergences[C]//Proc. of the 22nd International Conference on Artificial Intelligence and Statistics, 2018.
|
15 |
GENEVAY A, PEYRE G, CUTURI M. Learning generative models with sinkhorn divergences[C]//Proc. of the International Conference on Artificial Intelligence and Statistics, 2018.
|
16 |
BRANDON A, LEI X, KOLTER J Z. Input convex neural networks[C]//Proc. of the International Conference on Machine Learning, 2017: 146-155.
|
17 |
MUHAMMAD A, MAX D, OSCAR L, et al. Invertible generative models for inverse problems: mitigating representation error and dataset bias[C]//Proc. of the International Confe-rence on Machine Learning, 2020: 399-409.
|
18 |
SEBASTIAN B , AXEL R , JONAS A , et al. Data-driven nonsmooth optimization[J]. SIAM Journal on Optimization, 2020, 30 (1): 102- 131.
doi: 10.1137/18M1207685
|
19 |
JOSHUA B, LOIC R. Noise2self: blind denoising by self-supervision[C]//Proc. of the International Conference on Machine Learning, 2019: 524-533.
|
20 |
GEORGIOS B, MARCELLO C, CHRISTIAN E, et al. CAFLOW: conditional autoregressive flows[EB/OL]. [2023-10-04]. http://doi.org/10.48550/arXiv.2106.02531.
|
21 |
BLONDEL M, SEGUY V, ROLET A. Smooth and sparse optimal transport[C]//Proc. of the 21st International Conference on Artificial Intelligence and Statistics, 2018.
|
22 |
CUTURI M, KLEIN M, ABLIN P. Monge, bregman and occam: interpretable optimal transport in high-dimensions with feature-sparse maps[C]//Proc. of the 40th International Conference on Machine Learning, 2023: 6671-6682.
|
23 |
GRAVE E, JOULIN A, BERTHET Q. Unsupervised alignment of embeddings with wasserstein procrustes[C]//Proc. of the 22nd International Conference on Artificial Intelligence and Statistics, 2019: 1880-1890.
|
24 |
MARTIN A, SOUMITH C, LEON B. Wasserstein generative adversarial networks[C]//Proc. of the 34th International Conference on Machine Learning, 2017: 214-223.
|
25 |
NEKRASHEVICH M, KOROTIN A, BURNAEV E. Neural Gromov-Wasserstein optimal transport[EB/OL]. [2023-10-04]. http://doi.org/10.48550/arXiv.2303.05978.
|
26 |
NILES-WEED J , RIGOLLET P . Estimation of Wasserstein distances in the spiked transport model[J]. Bernoulli: Official Journal of the Bernoulli Society for Mathematical Statistics and Probability, 2022, 28 (4): 2663- 2688.
|
27 |
ZHANG Z X, GOLDFELD Z, MROUEH Y, et al. Gromov-Wasserstein distances: entropic regularization, duality, and sample complexity[EB/OL]. [2023-10-04]. http://doi.org/10.48550/arXiv.2212.12848.
|
28 |
RIOUX G, GOLDFELD Z, KATO K. Entropic Gromov-Wasserstein distances: stability, algorithms, and distributional li-mits[EB/OL]. [2023-10-04]. http://doi.org/10.48550/arXiv.2306.00182.
|
29 |
JANATI H, CUTURI M, GRAMFORT A. Wasserstein regularization for sparse multi-task regression[C]//Proc. of the 22nd International Conference on Artificial Intelligence and Statistics, 2019: 1407-1416.
|
30 |
SCETBON M, KLEIN M, PALLA G, et al. Unbalanced low-rank optimal transport solvers[EB/OL]. [2023-10-04]. http://doi.org/10.48550/arXiv.2305.19727.
|
31 |
AMBROGIONI L, GUCLU U, GERVEN M V. Wasserstein variational gradient descent: from semi-discrete optimal transport to ensemble variational inference[EB/OL]. [2023-10-04]. http://doi.org/10.48550/arXiv.1811.02827.
|
32 |
BACKURS A, DONG Y, INDYK P, et al. Scalable nearest neighbor search for optimal transport[C]//Proc. of the International Conference on Machine Learning, 2020: 497-506.
|
33 |
PEYRE G , CUTURI M . Computational optimal transport: with applications to data science[J]. Foundations and Trends in Machine Learning, 2019, 11 (56): 355- 607.
|